生物学家使用博弈理论来理解和预测进化(论)的某些结果。例如,John Maynard Smith 和George R. Price 在1973年发表于Nature上的论文中提出的“evolutionarily stable strategy”的这个概念就是使用了博弈理论。还可以参见进化博弈理论(evolutionary game theory)和行为生态学(behavioral ecology)。
正则形式的博弈(Normal form game)
设定 N 是一个“游戏者”(players)的集合。对于每一个“游戏者” 都有一个给定的“策略”集合. 博弈(游戏)是一个函数, 定义为:
也就是说,如果我们知道了游戏者的策略集合是什么,那么就可以有一个实数值与之对应。 我们可以把上面的方程拆成两个方程来进一步把它一般化。一个方程是正则形式(Normal form game)的博弈方程,描述策略规定结果的方式。 另外一个方程描写游戏者对于结果(outcome)集合的偏爱(preference)。也就是:
博弈论相关概念
纳什均衡
囚徒困境
重复博弈
大众定理
信息
帕累托最优
[编辑]
参考书目
Harold W. K.(editor), 1997, Classics in Game theory, Princeton, NJ:Princeton University Press ISBN 0691011931
Myerson, R., 1991, Game Theory: Analysis of Conflict. Cambridge and London: Harvard University Press.
Osborne, M. and A. Rubinstein,1994,A Course in Game Theory, Cambridge and London: The MIT Press.
冈田章,1996,‘ゲーム理论’东京:有斐阁 ISBN 4641067945
Axelrod, Robert: The Evolution of Cooperation, 1985, ISBN 0465021212
Axelrod, Robert: The Complexity of Cooperation - Agent-Based Models of Competition and Collaboration, 1997, ISBN 0691015678
Dixit, Avinash K./ Skeath, Susan: Games of Strategy, 1999, ISBN 0393974219
Eigen, Manfred / Winkler, Ruthild: Das Spiel, 1976, ISBN 3492021514
Hargreaves Heap, Shaun P. / Varoufakis, Yanis: Game Theory - A Critical Text, 2004, ISBN 0415250951
Kelly, Anthony: Decision Making Using Game Theory - An Introduction for Managers, 2003, ISBN 0521814626
Schlee, Welter: Einführung in die Spieltheorie, 2004, ISBN 3528032146